Moving your Way to a Good Night's Rest

Matthew P. Buman, PhD Assistant Professor Exercise Science & Health Promotion

ASU Retirees Association, January 27, 2016

Matthew P. Buman, PhD

matthew.buman@asu.edu

@mbuman

"...understanding the dynamic interplay of sleep, sedentary, and more active behaviors, and how collectively these behaviors may be harnessed for health promotion and disease prevention."

Background

- Sleep complaints highly prevalent
- Chronic insomnia 10% of US population
- Long-term pharmacological treatments are not recommended
- Behavioral sleep treatments are more effective but expensive to deliver

Exercise and Sleep: Summary Findings from RCT's

- Modest improvements in sleep
 - Subjective (sleep quality, sleep-onset latency)
 - Objective (Stage 1, Stage 2, # awakenings)
- National guidelines are sufficient for improvement (more is better!)
- 4 months or longer is better
- Acute vs. chronic effects debate

How much exercise is needed?

- Meeting physical activity guidelines appears sufficient
 - 150min/wk of moderate PA or 75 min/wk of vigorous PA (or some equivalent)
 - Stretching, strength training, and balance exercise (for older adults) are also recommended

How much is too much?

- Some limited evidence that prolonged exercise (>2hrs) leads to sleep disruptions
- Some may be more sensitive than others

Time of Day Effects

- Standard sleep hygiene suggests avoiding exercise 4hrs prior to sleep
- Little evidence
- Exercise 4-8 hrs prior to sleep is optimal
- Evening exercise is not discouraged

Resistance Training

- Limited evidence suggests equal benefits to aerobic activity
- Muscle pain following resistance training not thought to interfere with sleep

Yoga and Tai Chi

- Yoga appears effective, but more controlled studies are needed
- Evidence stronger for Tai Chi

How does exercise improve sleep?

- Reduced depression and anxiety
 - Exercise \rightarrow depression \rightarrow sleep
- Restorative effects
 - Body is restored during sleep
- Body temperature changes
 - Greater efficiency in temperature down regulation

How does exercise improve sleep?

- Circadian phase-shifting
 - Exercise as a re-syncronizer
- Inflammatory effects
 - Modest increases in IL-1, IL-6, and TNF- α
- Indirect effects
 - Reduce medications
 - Control weight
 - Improve functional capacity

What about sleep apnea?

Didgeridoo playing as alternative treatment for obstructive sleep apnoea syndrome: randomised controlled trial

Milo A Puhan, Alex Suarez, Christian Lo Cascio, Alfred Zahn, Markus Heitz, Otto Braendli

Health Outcome	Physical Activity
All-cause mortality	\checkmark
Cardiovascular disease	\checkmark
Stroke	\checkmark
Hyptertension	\checkmark
Atherogenic dyslipidemia	\checkmark
Type 2 diabetes	\checkmark
Obesity	\checkmark
Bone health	\checkmark
Physical function/falls	\checkmark
Some cancers	\checkmark
Cognitive function	\checkmark
Depression	\checkmark

Health Outcome	Physical Activity	Sedentary Behavior
All-cause mortality	\checkmark	\checkmark
Cardiovascular disease	\checkmark	\checkmark
Stroke	\checkmark	
Hyptertension	\checkmark	\checkmark
Atherogenic dyslipidemia	\checkmark	\checkmark
Type 2 diabetes	\checkmark	\checkmark
Obesity	\checkmark	\checkmark
Bone health	\checkmark	
Physical function/falls	\checkmark	
Some cancers	\checkmark	\checkmark
Cognitive function	\checkmark	
Depression	\checkmark	\checkmark

Health Outcome	Physical Activity	Sedentary Behavior	Sleep
All-cause mortality	\checkmark	\checkmark	\checkmark
Cardiovascular disease	\checkmark	\checkmark	\checkmark
Stroke	\checkmark		\checkmark
Hyptertension	\checkmark	\checkmark	\checkmark
Atherogenic dyslipidemia	\checkmark	\checkmark	\checkmark
Type 2 diabetes	\checkmark	\checkmark	\checkmark
Obesity	\checkmark	\checkmark	\checkmark
Bone health	\checkmark		\checkmark
Physical function/falls	\checkmark		\checkmark
Some cancers	\checkmark	\checkmark	\checkmark
Cognitive function	\checkmark		\checkmark
Depression	\checkmark	\checkmark	\checkmark

Is sitting the new smoking?

Sitting as a novel risk factor

2013 NSF Annual Poll

Total sittingShort sleep duration (<7 h)Long sleep duration (>8.5 h)Long sleep onset latency (≥30 m)Waking up during the nightWaking up too early in morningPoor sleep quality rating'High risk' for OSAExcessive daytime sleepiness	OR (95% Cl) 1.02 (0.98 ,1.06) 0.96 (0.88 ,1.05) 0.97 (0.92 ,1.03) 1.02 (0.97 ,1.06) 0.99 (0.95 ,1.04) 1.06 (1.01 ,1.11) 1.01 (0.96 ,1.06) 1.00 (0.93 ,1.06)
Sitting while watching televisionShort sleep duration (<7 h)	1.04 (0.96 ,1.14) 1.10 (0.93 ,1.30) 1.15 (1.04 ,1.27) 1.08 (0.98 ,1.18) 1.12 (1.03 ,1.23) 1.12 (1.02 ,1.24) 1.15 (1.04 ,1.28) 1.12 (1.02 ,1.24) 1.15 (1.04 ,1.28) 1.04 (0.93 ,1.18) 1.04 (0.93 ,1.18)

Buman et al., CHEST, in press

School of Nutrition & Health Promotion

Exercise protects against sitting

Buman et al., CHEST, in press

Considering the full 24h spectrum

Isotemporal Substitution Method

- 24h day is distributed between sleep, sedentary, and active behaviors
 Time in finite; increasing one behavior means
- The infinite, increasing one behavior means decreasing another

Target Behavior	Replace with	<u>Health</u> Outcome
↓Television viewing	 ↑Brisk walking ↑Desk work ↑Sleep ↑Household chores 	??? ??? ??? ???
↓Sleep	个Running 个Sitting	??? ???

American Journal of Epidemiology © The Author 2010. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org.

DOI: 10.1093/aje/kwq249

Original Contribution

Objective Light-Intensity Physical Activity Associations With Rated Health in Older Adults Matthew P. Buman*, Eric B. Hekler, William L. Haskell, Leslie Pruitt, Terry L. Conway, Kelli L. Cain, James F. Sallis, Brian E. Saelens, Lawrence D. Frank, and Abby C. King

* Correspondence to Dr. Matthew P. Buman, Department of Medicine, Stanford University School of Medicine, Medical School Office Building, 251 Campus Drive, MC 5411, Stanford, CA 94305-5411 (e-mail: mbuman@stanford.edu).

Adding in sleep

Nutritional and Health Examination Survey (NHANES) (N=2185 adults >20 years of age)

Outcomes: Cardiometabolic risk factors

Research Questions

- What is the impact of re-allocating time spent in sleep, sedentary, and active behaviors on cardiometabolic risk biomarkers?
- Are decreased sedentary time or increased active time protective or synergistic in the relationship between sleep duration and cardiometabolic risk?

Results (per 30min re-allocation)

Relative Risk

Optimal sleep enhances MVPA effects

Light Intensity "protection" from short sleep

Light Intensity "protection" from short sleep

What does this all mean?

- MVPA may be the most healthenhancing (time dependent) behavior
- Light activity and sleep are also beneficial
- Activities should be re-allocated from sedentary time (but doesn't have to be replaced with MVPA for benefit)

What to do with an extra 30 minutes ...

BeWell24

Smartphone "app" that uses evidence-based behavioral strategies to target the full 24h spectrum of health behaviors

Funded by pilot grant from Virginia G. Piper Charitable Trust

Returning Veterans are at greater risk

- Often suffer from PTSD, traumatic brain injury
- May struggle with re-integration into civilian life
- At disproportionate risk for metabolic syndrome

Activity Monitoring

- Users self-report behaviors across the 24h
- Able to report context of behaviors
 - Sleep quality metrics
 - Domains of sitting (e.g., work, TV, transport)
 - Types of exercise
- Ideally 5min in morning and 5min in evening

- Evidence-based treatment to reassociate bed with restful sleep
- Personalized wake time calculator with feedback
- Basic sleep hygiene tips

Sedentary

- Focus on reducing time spent <u>sitting</u> by swapping sitting with other activities
- Gives context-specific (i.e., work, TV) feedback and tips

Physical activity

- Based on Fit-Minded strategies
- Provides automated goal suggestions based on previous behavior
- Provides usergenerated tips for motivation

BeWell24 Pilot study

Preliminary results

7% increase in sleep efficiency

12% of 47 min/day

105% or 11 min/day of moderate-vigorous physical activity

12.3% reduction in fasting glucose

Thank you!

Matthew P. Buman, PhD <u>matthew.buman@asu.edu</u> @mbuman

